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This article reports on one component of a larger study on measurement of the zero-
pressure-gradient turbulent flat plate boundary layer, in which a detailed investigation
was conducted of the suite of corrections required for mean velocity measurements
performed using Pitot tubes. In particular, the corrections for velocity shear across
the tube and for blockage effects which occur when the tube is in close proximity
to the wall were investigated using measurements from Pitot tubes of five different
diameters, in two different facilities, and at five different Reynolds numbers ranging
from Reθ = 11 100 to 67 000. Only small differences were found amongst commonly
used corrections for velocity shear, but improvements were found for existing near-
wall proximity corrections. Corrections for the nonlinear averaging of the velocity
fluctuations were also investigated, and the results compared to hot-wire data taken
as part of the same measurement campaign. The streamwise turbulence-intensity
correction was found to be of comparable magnitude to that of the shear correction,
and found to bring the hot-wire and Pitot results into closer agreement when applied to
the data, along with the other corrections discussed and refined here.
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1. Introduction
To measure the mean velocity in a turbulent wall-bounded flow, it is common to

use either Pitot tubes or hot-wire probes. Pitot tubes require corrections for shear and
near-wall effects, and possibly for the effects of turbulence and low Reynolds numbers.
Hot-wires need to be calibrated (typically by reference to a Pitot or Pitot-static tube),
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and the measurements can be affected by heat conduction to the walls, free convection
effects, ambient temperature changes, calibration drift, the difficulty of determining
the precise wall position, and other flow-dependent influences. It is not surprising,
therefore, that hot-wire and Pitot tube measurements of the mean velocity profile do
not always agree, especially in the near-wall region. McKeon et al. (2003) illustrated
this problem by comparing some recent near-wall studies of pipe flow, and found
discrepancies up to 15 % among the data at y+ = 20, where y+ = yuτ/ν, and y is
the distance from the wall, uτ = √τw/ρ, τw is the wall shear stress, and ρ and ν

are the fluid density and kinematic viscosity, respectively. The main candidates for
this discrepancy include the inaccuracy in finding the wall position (Örlü, Fransson &
Alfredsson 2010) and the uncertainty in uτ , although a recent investigation by Örlü &
Alfredsson (2010) revealed that the mean velocity measured by hot-wire probes can
also be susceptible to spatial filtering effects, which were previously thought to be
confined to measurements of turbulence (cf. Ligrani & Bradshaw 1987).

In recent studies of the mean flow, there seems to have been a tendency to favour
the hot-wire over the Pitot tube. For example, all mean velocity profiles reported in the
studies by Hites (1997), Österlund (1999), Hutchins & Marusic (2007), Nickels et al.
(2007) were obtained using single, normal hot-wires. Certainly, if the principal aim
is to acquire turbulence data, the hot-wire will give a measure of the mean velocity
without any additional work, and the hot-wire may be able to approach the wall more
closely than a conventional Pitot tube. In addition, the corrections required to obtain
accurate Pitot tube measurements give the impression that Pitot tubes are a somewhat
unreliable device, especially in regions near the wall where all the corrections may
become important at the same time. However, given the difficulty in eliminating
sources of error in hot-wire measurements, and given that a Pitot tube can be in
contact with the wall at the initialization of the measurement thus providing a fixed
reference distance to the wall, it is not clear whether hot-wire probes provide any
accuracy advantage over Pitot tubes when measuring mean velocity in wall-bounded
flows.

In 2008, researchers from Caltech, Illinois Institute of Technology (IIT), the
Royal Institute of Technology (KTH), University of Bologna, Shinshu University,
Nagoya University, the University of Melbourne and Princeton University undertook a
cooperative experimental effort called the International Collaboration on Experimental
Turbulence (ICET) with the aim of studying methods and facilities used in the study
of wall-bounded turbulent flows, with a particular emphasis on high Reynolds number
turbulent boundary layers.

Three facilities capable of providing moderate to high Reynolds number boundary
layers were used: the minimum turbulence level (MTL) wind tunnel at KTH, the
high Reynolds number boundary layer wind tunnel (HRNBLWT) at the University of
Melbourne, and the National Diagnostic Facility (NDF) at IIT. Measurements in these
facilities were performed over a range of Reynolds numbers based on momentum
thickness, Reθ , from 11 000 to 67 000. By using a number of different measurement
techniques, the ICET team proposed to compare nominally identical flows generated in
three different facilities. As one part of this effort, a wide range of Pitot measurements
were taken in the MTL and HRNBLWT, and it is these measurements that are of
concern here.

Here we describe the accuracy of Pitot tube measurements and the attendant suite
of correction procedures. We aim to establish definitively that Pitot tubes, when used
carefully, can give reliable data with a very low level of uncertainty in the mean
velocity and the effective position of the tube through comparison with mean hot-wire
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(a) (b)

FIGURE 1. Illustration of effect of Pitot tube on streamlines: (a) in velocity shear and (b) near
a solid boundary. Adapted from McKeon et al. (2003).

data from the same measurement campaign. There, the complete data set will be used
to evaluate the integral properties of the boundary layer and their Reynolds number
dependence, the extent of the logarithmic part of the profile, and the uncertainty in
estimating the log-law constants.

2. Pitot tube corrections
To obtain accurate velocity measurements in a boundary layer using a Pitot tube,

certain corrections need to be applied (Tavoularis 2005; McKeon 2007). McKeon
et al. (2003) identified a low Reynolds number correction (also called the viscous
correction), a shear correction (otherwise known as the velocity gradient correction),
a near-wall correction, a turbulence correction, and, if the static pressure is measured
using a wall tapping, a Reynolds-number-dependent correction for the static pressure
reading may be necessary. For the experiments reported here the static tap correction
was found to be unnecessary, since the tap diameter remained sufficiently small
relative to the viscous scale in all cases; see McKeon & Smits (2002) for a static
tap correction used in high Reynolds number pipe flow.

For the viscous correction, experimental results indicate that viscous effects can
be ignored for Red > 100, where the tube Reynolds number Red is based on local
mean velocity U and Pitot tube outer diameter dp (MacMillan 1954; Chue 1975). For
30< Red < 100, Zagarola & Smits (1998) suggested that the correction for the viscous
effects could be represented by

1P
1
2
ρU2
= 1+ 10

Re1.5
d

, (2.1)

where 1P is the measured difference between total and static pressure.
Use of a Pitot tube in a shear flow introduces additional adverse effects through

nonlinear averaging of the pressure variation across the probe face and asymmetric
deflection of the streamlines. The effect of spatial averaging across the face of the
probe is usually small compared to that of asymmetric streamline deflection, thus
a velocity gradient correction typically only compensates for the higher velocity
streamlines deflecting towards the tube, as illustrated in figure 1(a). As a result,
the measured total pressure at the tube position is larger than the pressure would be
without the tube in place. The most common correction for this effect is to apply a
virtual shift to the location of the measurement tube in the higher velocity direction by
an amount 1y, where

1y= εdp, (2.2)
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thereby compensating for the streamline deflection. MacMillan (1957) proposed a
constant value of ε = 0.15, while other authors have found 0.15 < ε < 0.19 (see, for
example, Tavoularis & Szymczak 1989). Citing earlier theoretical work by Hall (1956)
and Lighthill (1957), McKeon et al. (2003) introduced a correction that links ε to the
local velocity gradient through

ε = 0.15 tanh(4
√
α), (2.3)

where α is a non-dimensional velocity gradient given by

α = dp

2U

dU

dy
. (2.4)

This correction asymptotes to the MacMillan value of ε in strong velocity gradients
and it has the advantage that it gives ε = 0 in uniform flow.

A near-wall correction is required to compensate for additional blockage effects in
the vicinity of a solid boundary, whereby the blockage of the tube causes a reduction
in the shear-induced streamline deflection, as illustrated in figure 1(b). MacMillan
(1957) found this effect to be important within two tube diameters of the wall, and
suggested that, in addition to the shear correction given by (2.2), the velocity in this
region should be increased by the amount 1U, where

1U

U
= 0.015e−3.5(y/dp−0.5). (2.5)

MacMillan (1957) noted that this correction should only be used for 30 < d+ < 230
where d+ = dpuτ/ν. McKeon et al. (2003) proposed an alternative near-wall correction
method based on the Preston tube results of Patel (1965), which were obtained in
various wall-bounded flows, and suggested that for y/dp < 2, (2.3) for ε should be
replaced by

ε =


0.150 for d+ < 8,
0.120 for 8< d+ < 110,
0.085 for 110< d+ < 1600.

(2.6)

A turbulence correction may also be necessary, although the magnitude and form
of the turbulence correction for Pitot tube measurements continues to be a matter of
debate, particularly in light of the Pitot tube measurements in high Reynolds number
turbulent pipe flow reported by Zagarola & Smits (1998) and subsequent re-analysis by
Perry, Hafez & Chong (2001). In essence, the unsteadiness introduced by turbulence
increases the measured total pressure. Goldstein (1938) investigated the effects of
turbulence theoretically and suggested that

1P= 1
2ρ(U

2 + u′2 + v′2 + w′2), (2.7)

where u′2, v′2 and w′2 are the three components of the turbulence intensity (using
the coordinate system considered here, these components are taken to be in the
streamwise, wall-normal, and cross-stream directions, respectively). This dependence
can be written as

1P= 1
2ρ(U

2 + ϕu′2), (2.8)

where ϕ accounts for the effects of anisotropy and integral length scale of the
turbulence (Tavoularis 2005). Note that in a boundary layer the near-wall turbulence
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(a) (b)

FIGURE 2. The two tube support structures used in this study: (a) McKeon et al. design; and
(b) new support structure.

is highly anisotropic with the degree of anisotropy varying throughout the wall layer,
so that ϕ will be a nonlinear function of y. Many other turbulence corrections have
been proposed (see, for example, Ozarapoglu 1973 and Dickinson 1975), but no single
correction has been found to work satisfactorily in all conditions. Pitot tube vibration
can potentially introduce effects similar to that of turbulence, but in turbulent wall-
bounded flows these effects are usually small when compared to that of the turbulence
itself. One of the aims of the current work is to more closely examine the influence of
the turbulence on the mean velocity measured using a Pitot tube.

3. Experiment description
3.1. Experimental facilities

Detailed Pitot tube measurements were conducted in two of the three ICET wind
tunnel facilities: in May 2008 in the MTL wind tunnel at KTH, Stockholm, Sweden
(described in detail by Lindgren & Johansson 2002), and in August 2008 in the
High Reynolds Number Turbulent Boundary Layer Wind Tunnel (HRNBLWT) at the
University of Melbourne, Australia (as described by Nickels et al. 2007). In the MTL,
the boundary layer developed along a plate located at the wind tunnel mid-plane,
as described by Österlund (1999) but with a different trailing edge flap angle and
boundary layer trip. In the HRNBLWT, the boundary layer developed along the tunnel
floor, as described by Nickels et al. (2007).

3.2. Instrumentation: Pitot tube measurements
In the MTL, Pitot tubes were used with four different outer diameters, dp = 0.2, 0.3,
0.89 and 1.8 mm, each with an inner-to-outer diameter ratio of 0.6. The three largest
tubes were the same tubes used in the study by McKeon et al. (2003) (figure 2a), with
the additional 0.2 mm tube made for this study having a slightly different tube support
structure (figure 2b). A second 0.89 mm tube was also tested using the same support
design as used for the 0.2 mm tube, and the data obtained for the 0.89 mm tubes using
these two different designs were found to agree within experimental uncertainty. In
the HRNBLWT four tube diameters with the McKeon et al. (2003) design were used,
having dp = 0.3, 0.51, 0.89 and 1.8 mm.

In both wind tunnels, the static pressure was measured using two static taps of
diameter ds = 0.57 mm connected together. The taps were positioned at the same
downstream location as the tip of the Pitot tube and 6.35 mm on either side of it. The
edges of the holes were inspected with an optical microscope to ensure that the taps
were free of burrs and level with the plate surface.

The pressure difference between the Pitot tube and the static taps was measured
using a Datametrics 1400 pressure transducer. In the KTH experiments, an additional
10 Torr MKS Baratron transducer was used in parallel as a check on the primary
transducer. In the HRNBLWT, an Omega PX653-0.05BD transducer was used to verify
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the low pressure sensitivity of the Datametrics transducer. In all cases, the pressures
measured by the transducers were found to agree to within experimental scatter. All
results presented here will be from the Datametrics transducer, which was calibrated
by a professional calibration service in the period between the HRNBLWT and KTH
experiments, and also checked frequently against a micromanometer to verify the
stability of the transducer over time and across a range of temperatures.

Flow temperature and atmospheric pressure were monitored using the HRNBLWT
and KTH transducers over the course of each profile measurement.

The Pitot tube was traversed throughout the boundary layer with measurement
positions spaced logarithmically close to the wall and equidistantly in the outer part of
the boundary layer. Traversing was performed using a lead screw traverse driven
by a stepper motor and equipped with a linear encoder. In the HRNBLWT the
traversing apparatus was a traversing sting of NACA0012 cross-section with chord
length of 69.3 mm to minimize aerodynamic interference. The system is identical
to that used by Hutchins et al. (2011). The sting was mounted to a linear rail
actuated by a ball screw and stepper motor arrangement. On the basis of the steps-
per-revolution of the motor and the pitch of the ball screw, the computer-controlled
sting could be traversed vertically with a minimum step size of 8 µm. A Renishaw
RG58C linear encoder provides a measurement of all incremental traverse movements
with a resolution of 0.1 µm and accuracy of 3 µm m−1. In Stockholm a smaller
traversing apparatus, built around a Velmex A1509K1-S1.5 lead screw driven by a
Lin Engineering micro-stepping stepper motor and controller, was used to position
the probe with a minimum step size of 20 nm. Actual probe position was determined
using an AcuRite SENC 50 linear encoder, with a 0.5 µm resolution and accuracy of
5 µm m−1. All traverses were initiated with the Pitot tube in contact with the wall.
In the KTH experiments, backlash introduced some uncertainty in determining the
location of the first measurement point, so for the Melbourne experiments a Canon
EOS 40D SLR camera with a 200 mm macro lens was synchronized with the traverse
to provide images which were used to visually verify the point where the tube first
lifted away from the wall.

Data acquisition and traverse control was provided by a 16-bit USB data acquisition
system (National Instruments USB-6212). Voltages were digitized at a rate of 1 kHz
with sample times adjusted from 20 s up to 2 min, depending on the flow velocity
and proximity to the wall. After moving the Pitot tube, up to 20 s was allowed before
acquiring data to minimize transients. Averaging and settling times were determined
using preliminary measurements with the smallest Pitot tube used in each facility,
based on convergence and response of the measured mean velocity.

3.3. Hot-wire measurement instrumentation and procedures
As part of this experimental campaign, measurements were also conducted using
hot-wire anemometry by researchers from the University of Melbourne and KTH. The
results from these experiments allow direct comparison of the results measured by
both techniques at the same flow conditions and the experimental procedures used by
each group are described below.

3.3.1. Melbourne University instrumentation
Measurements made by the Melbourne group were conducted with two hot-wire

probes mounted side by side with their stubbed sensing elements 220 mm upstream
of the leading edge of the same traversing sting used for the Pitot measurements in
the HRNBLWT. One hot-wire probe had a sensing element of either 1.5 or 2.5 µm
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diameter (depending on the Reynolds number) and the other probe a diameter of
5 µm. Both active parts of the sensors had a length-to-diameter ratio of 200. This
arrangement was found to be useful for long duration experiments where smaller
wires can suffer from calibration drift, whereas larger wires have been found to be
much more stable. In this way, the 5 µm probe provides a reference mean velocity
profile that can be used to correct the smaller wire data if necessary (see Hutchins
et al. 2011). For smaller wires, a custom-built constant temperature anemometer circuit
(MUCTA) was used, while for the larger wires an AA Labs (AN-1003) anemometer
was employed. In this paper the mean-flow hot-wire data presented are results from the
larger (5 µm) sensor.

3.3.2. KTH instrumentation
The measurements by the KTH group were performed by means of a custom-built

single-wire, boundary-layer-type probe. The prongs consisted of 0.5 mm diameter
steel wires that were etched to give a conical tip with a diameter of around 30 µm.
The hot-wire itself was a stubless Platinum wire of around 0.5 mm length and
nominal diameter of 2.5 µm that was soldered to the tip of the prongs facing the
flat plate. A Dantec StreamLine 90N10 frame in conjunction with a 90C10 constant
temperature anemometer module operated at a resistance overheat of 70 % and a DISA
55M01 main frame with a 55M10 standard CTA module at an overheat of 80 % were
used for measurements in the MTL wind tunnel and HRNBLWT, respectively.

The hot-wires were calibrated both before and after each profile measurement in
order to ensure that no drift had occurred during the measurement. The calibration
was done in situ in the free stream against a Pitot-static tube connected to a
micromanometer of type FC0510 (Furness Control Limited), from which also the
ambient pressure and temperature in the tunnel were obtained.

The same traversing apparatus was used for both groups’ hot-wire measurements.
For the measurements in the MTL tunnel, the traversing system described in detail in
Österlund (1999) was employed. It consists of a servo motor and an optical encoder
with a relative accuracy of 1 µm. For the measurements in the HRNBLWT the same
system was used as for the Pitot tube measurements.

3.3.3. Hot-wire measurement procedures
The hot-wire measurements were performed and post-processed in a consistent way

for all measurement runs by both groups. The calibration function was a third-order
polynomial that was fitted to the calibration data pairs (including the voltage at
zero velocity). The preliminary wall position of the sensing element was obtained
optically and was adjusted by fitting the near-wall data (up to y+ < 20) to a prescribed
mean velocity distribution. The sampling times exceeded by far those for the Pitot
tube measurements in order to ensure converged statistics for even the higher-order
moments.

3.4. Oil film interferometry
Wall shear stress in both wind tunnels was determined using oil film interferometry.
The basic setup employed a 35 W Phillips SOX35 low pressure sodium lamp, an
optically clear insert in the bounding wall located at the same streamwise measurement
station as the hot-wire and Pitot tube experiments, and a Nikon D80 (MTL) or
Nikon D200 (HRNBLWT) digital camera equipped with a 200 mm, f/4 macro lens.
The timing of each camera was verified to within 0.1 s by imaging a stop watch.
Silicone oil with viscosity of 20 cSt was used to produce the oil film in both the
HRNBLWT and MTL measurements, with a second 200 cSt silicone oil used in the
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MTL measurements. The oil viscosity was calibrated using a capillary viscometer
immersed in a temperature-regulated bath. The same Fluke thermocouple thermometer
was used to monitor surface temperature as was used for calibration temperature.

In the MTL, flow conditions during shear stress measurements were monitored using
a PT100 RTD temperature probe and a reference Pitot-static tube connected to a
Furness FCO510 flow meter. In the HRNBLWT, flow conditions were monitored using
a PT100 RTD temperature probe and Pitot-static tube connected to a MKS Baratron
698 pressure transducer monitored by a PC-based data acquisition system.

Depending on the facility, the camera was mounted on different supports designed to
accurately set the angle relative to the wall-normal direction, measured by a precision
level to be 15 ± 0.5◦. For each set of measurements a calibration image of millimetre
paper placed on the optically clear insert was taken and repeated images indicated
that accuracy of ±0.1 % could be achieved. A silicone oil drop was then deposited
with a needle on the transparent surface and the wind tunnel started. Once steady
velocity was achieved, the oil film interferometry images were recorded at constant
time intervals with the interval depending on oil viscosity and wall shear stress.
3872×2592 pixel2 images were acquired, corresponding to a 52–72 pixel mm−1 (MTL)
or 124 pixel mm−1 resolution. Measurements with several oil drops were performed
during the same runs to verify repeatability of the measurements.

Images were processed to determine the wall shear from the time rate of change of
the interferometry fringes. The fringe wavelength was estimated by spanwise averaging
an image strip normal to the fringes to obtain a one-dimensional signal s(x). The
wavelength of the fringes was then determined by maximizing the correlation between
this signal and a complex exponential by means of the condition

d
dk

∣∣∣∣1L
∫ L

0
s(x)e(2πik/Lx) dx

∣∣∣∣= 0, (3.1)

where i=√−1, L is the interrogation length and k is the wavenumber, thus providing
the fringe wavelength as L/k. Comparison of this approach to other techniques
revealed that estimation of the wall shear in this way was less user-dependent and
faster to apply than other techniques.

3.5. Experimental conditions
The experimental conditions for the Pitot tube measurements are summarized in
table 1. The semi-empirical skin friction relationship

uτ
Ue
=
√

Cf

2
=
(

1
0.38

lnReδ∗ + 3
)−1

, (3.2)

determined from oil-film wall shear measurements in the KTH, Melbourne and IIT
wind tunnels, was used to estimate the friction velocity, uτ . Here Ue is the free-stream
velocity, Cf is the friction coefficient, and Reδ∗ = Ueδ

∗/ν is the Reynolds number
based on displacement thickness δ∗.

3.6. Uncertainty estimates
Experimental uncertainties were estimated taking into account the accuracy of all
parts of the experiment, and they are shown in table 2. Details of the uncertainty
calculations are given in the Appendix. To provide a visual reference regarding the
magnitude of the uncertainty, a single example mean velocity profile is shown in
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FIGURE 3. Error bars illustrating estimated error in U+ and y+ for 0.3 mm Pitot tube mean
velocity profile from HRNBLWT at Reθ = 21 400.

Quantity Notation Uncertainty
±

(i) Dynamic pressure 1p 0.4 %
(ii) Temperature T 0.2 %
(iii) Atmospheric pressure patm 0.1 %
(iv) Air density ρ 0.2 %
(v) Air dynamic viscosity µ 0.2 %
(vi) Skin friction coefficient cf 3.8 %
(vii) Viscous length scale `∗ 1.9 %
(viii) Velocity (Pitot tube) U 0.3 %
(ix) Inner-scaled velocity U+ 1.9 %
(x) Wall location y0 20 µm
(xi) Relative wall position (Melbourne) 1y 1.0 µm
(xii) Relative wall position (KTH) 1y 0.5 µm
(xiii) Momentum thickness Reynolds number Reθ 0.9 %
(xiv) Displacement thickness Reynolds number Reδ∗ 0.7 %
(xv) Velocity (hot-wire) U 1.0 %

TABLE 2. Uncertainty estimates for various quantities.

figure 3 with corresponding error bars. Ensuing figures will be shown without the error
bars to maintain clarity of the figures.

4. Assessment of Pitot tube corrections
All measured pressures were calculated from the mean Pitot tube pressure data and

corrected for viscous effects using (2.1). However, corrections for finite static tap size
were found to be negligible (d+s < 50 for all cases), the nonlinear effects of spatial
averaging are assumed small and vibration effects are not considered. In what follows,
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FIGURE 4. Boundary layer profiles at Reθ = 21 400 measured in HRNBLWT using a range
of Pitot tube diameters. Uncorrected profiles are shown shifted vertically by 10; profiles
corrected using MacMillan corrections are shifted vertically by 5 with the bottom profiles
corrected using the McKeon et al. corrections. The upper inset shows magnification of
profiles corrected using MacMillan procedures near the wall; the lower inset shows the
profiles corrected following the McKeon et al. procedures. Tube diameters: ©, 0.30 mm;
O, 0.51 mm; 4, 0.89 mm; �, 1.80 mm. Solid lines indicate U+ = y+.
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we will assess the additional velocity shear and near-wall corrections, and investigate
the nature of the turbulence correction.

4.1. Velocity shear correction
The results obtained using Pitot tubes with four different diameters at Reθ = 21 400 are
given in figure 4, which shows: (i) results corrected only using the viscous correction;
(ii) results corrected using the viscous correction as well as the shear and near-wall
corrections advocated by MacMillan; and (iii) results corrected using the viscous
correction as well as McKeon et al. shear and near-wall corrections. Here α was
determined using the velocity gradient calculated from the uncorrected velocity using
a second-order accurate finite difference scheme for unequal grid spacing (Hoffman
& Chiang 2000). Iterative schemes for determining α using the velocity gradient
determined from a previous iteration’s corrected velocity were also attempted, but
found to produce no noticeable difference in the corrected profiles when compared to
those corrected with α determined from velocity gradients estimated using uncorrected
velocity. Note that in figure 4 the collapse of data from different tube diameters
provides an indication of the capability of the corresponding corrections, with perfect
collapse reflecting a correction to infinitesimal tube size. The results shown in figure 4
without shear and near-wall corrections clearly demonstrate the potential error which
can be introduced if these corrections are not applied.

Far away from the wall, there appears to be little difference between the MacMillan
and McKeon et al. corrections. To make this comparison more quantitative, we
first account for the variations in y+ measurement locations by interpolating the
measured velocity data from each tube and measurement condition combination to
50 logarithmically spaced locations between y+ = 10 and y+ = 1000. Note that only
the 10 cases with the smallest dp could be interpolated at y+ = 10. The mean, 〈U+〉,
and two times the standard deviation, 2 〈U+〉std , of the results at each interpolated
location are shown in figure 5.

Interestingly, we see a small difference in the gradient of 〈U+〉 evaluated using
the MacMillan and the McKeon et al. corrections for y+ < 300, indicating a greater
difference between the effect of the corrections than was evident from figure 4. This
difference is likely introduced by the insensitivity of the constant ε correction to the
magnitude of the velocity shear. There is also a small difference in 2 〈U+〉std within the
range 100< y+ < 600, with the results indicating a slight improvement in the collapse
of the data using the corrections suggested by MacMillan. However, for y+ > 70 the
2 〈U+〉std results also show that the experimental scatter for either correction is within
the estimated uncertainty in U+, which is illustrated by a dashed line in figure 5(b),
since 95 % of data can be expected to lie within 2 〈U+〉std . Furthermore, the increase
in 2 〈U+〉std for y+ < 70 can be attributed to uncertainty propagated into U+ from the
uncertainty in y+ via the high-velocity shear near the wall, which can be estimated
using εy+∂U+/∂y+, where εy+ is the uncertainty in wall position. This additional
contribution is illustrated by the dash-dotted line in figure 5(b). Therefore it appears
that either shear correction provides sufficient accuracy (that is, to within experimental
uncertainty).

4.2. Near-wall correction
Close inspection of the insets in figure 4 reveals that the disagreement between
the different tube diameters is larger for results corrected using the McKeon
et al. corrections than for the results corrected using the MacMillan corrections in
the region where the near-wall corrections were applied (y/dp < 2). McKeon et al.
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FIGURE 5. (a) Mean and (b) standard deviation of all data sets interpolated to the same
y+ locations after using MacMillan near-wall and constant ε corrections (©), and McKeon
et al. near-wall and shear corrections (�). The dashed line in (b) indicates estimated
uncertainty in U+; the dash-dotted line in (b) indicates average estimated uncertainty in
U+ when error propagated from y+ uncertainty is included.

(2003) also observed this disagreement and suggested ignoring data measured within
1dp of the wall. In the current study, we find that the source of this disagreement in the
McKeon et al. corrections is due to the step changes amongst the three d+ regimes in
(2.6). Therefore, we suggest a modified correction for y < 3dp which does not rely on
d+ and hence a priori knowledge of the wall shear stress. This new correction is

ε = 0.15 tanh(4
√
α)− εnw (4.1)

in which εnw accounts for the displacement of the streamlines due to near-wall
blockage effects and can be found from

εnw = β1(y/dp − 3)+ β2(y/dp − 3)[0.15 tanh(4
√
α)], (4.2)

where β1 = 0.174 and β2 = −1.25. The new near-wall correction is compared to the
original McKeon et al. near-wall correction in figure 6, and the resulting collapse can
be seen to be comparable to the collapse resulting from application of the MacMillan
correction.

In general, we recommend the correction embodied in (4.1) for the near-wall region
for all future use of Pitot tubes when d+ < 150 in wall-bounded flows, in that it
accounts for the possibility of uniform flow (in contrast to MacMillan’s correction
procedure), it improves the McKeon et al. formulation, and will admit measurements
for y< dp (in contrast to the McKeon et al. correction procedure).

In the absence of turbulence effects, a complete Pitot tube correction process is
therefore as follows: (i) apply the viscous correction for static taps if necessary (see
McKeon & Smits 2002, for example); (ii) apply the viscous correction of (2.1) when
Red < 100; (iii) correct the results for y/dp > 3 for shear using the McKeon et al. shear
correction using (2.3); and (iv) apply the modified McKeon et al. near-wall correction
for y/dp < 3 using (4.1).
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FIGURE 6. Comparison of viscous, shear and near-wall effect corrected data from the
Melbourne experiments using: (bottom) the proposed near-wall correction of (4.1) and
McKeon et al. shear correction; (middle) the original McKeon et al. near-wall and shear
correction; and (top) the MacMillan near-wall and constant ε correction. Original McKeon
et al. corrected data shifted vertically by 2 and MacMillan corrected data shifted vertically
by 4.

4.3. Turbulence correction
The average total pressure measured by a Pitot tube is nonlinearly related to velocity,
and so we expect there to be a contribution from the velocity fluctuations, introduced
during averaging. This can be shown analytically (Goldstein 1938) by integrating the
equation of motion of a fluid element moving along a streamline (Euler’s equation).
For incompressible flow, we obtain

p

ρ
=−1

2
u2

s −
∫
∂us

∂t
ds+ c(t), (4.3)

where s is the coordinate along the streamline, us is the velocity in the s-direction, t is
time, p is the pressure, and c(t) is a time-varying constant of integration. For turbulent
shear flows us can vary in magnitude and direction, so we can rewrite us using
Cartesian velocity components u, v,w, where u2

s = u2 + v2 + w2. In addition, these
velocity components may be decomposed into mean and fluctuating contributions, U
and u′, V and v′, W and w′ respectively. Applying the same decomposition to pressure
such that p= P+ p′, substituting into (4.3) and time-averaging the result gives

P

ρ
+ 1

2
(U2 + V2 +W2 + u′2 + v′2 + w′2)= constant, (4.4)

where the constant of integration is commonly referred to as the total pressure.
Equation (4.4) differs from the classical Bernoulli equation only by the turbulence
intensity terms, u′2, v′2 and w′2. With the Pitot tube aligned with U such that
V = W = 0 and introducing 1P as the difference between the total and static
pressure, (4.4) can be used to determine the following relationship:

1P= 1
2ρ(U

2 + u′2 + v′2 + w′2). (4.5)
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In fact, the mean flow orientation impinging on the probe face will not be exactly
parallel to the probe, due to the combined effects of velocity shear and near-wall
blockage. However, the effect of the non-zero transverse components of the mean
velocity at the probe face should be negligible following application of shear and
near-wall corrections. Since the essence of these corrections is to adjust measurement
position and velocity to remove the influence of the probe presence from the mean
flow, they artificially move the measurement position to a location where the mean
flow is parallel to the wall.

Since a Pitot tube (combined with a static pressure reference) measures 1P, the
measured velocity Um overestimates the true velocity U according to

Um =
√

U2 + u′2 + v′2 + w′2. (4.6)

This result applies to any Pitot tube, regardless of diameter (as long as spatial filtering
effects are small).

As is commonly done in Pitot turbulence corrections, an estimate of the true velocity
can be easily determined from the measured velocity using (4.5), as given by

U+ = U

uτ
=
√(

Um

uτ

)2

− u′2

u2
τ

− v
′2

u2
τ

− w′2

u2
τ

. (4.7)

Equation (4.7) assumes that the Pitot tube is always aligned with the flow streamline
and neglects fluctuations in the orientation of the streamlines impinging on the Pitot
tube face. This observation can be accommodated through the introduction of a factor,
as is done in (2.8) for example, to account for effects of anisotropy, scale and structure
of the turbulence. We now evaluate the need for additional modifications to (4.7) using
a new approach.

We first note that a misalignment in direction between the streamline and tube in
the mean will cause a decrease in measured total pressure proportional to the angle
θ between the two directions (Chue 1975). We will therefore assume a quasi-steady
behaviour such that

U2
m = (f (θ)+ 1)(U2 + u′2 + v′2 + w′2), (4.8)

where f (θ) is the average value of a coefficient reflecting the decrease in measured
velocity relative to the true velocity due to the instantaneous value of θ , as given by
Chue (1975), which we have simplified to the polynomial representation given by

f (θ)= U2
m − U2

U2
=−0.56θ 2 − 0.88θ 4 + 0.85θ 6, (4.9)

where θ is in radians.
To determine the average value of f (θ), at a specific wall-normal position, we will

use a probability density function (p.d.f.) of the flow angle. This p.d.f. does not have
to be determined directly, but can be estimated through the p.d.f. of the velocity
fluctuations g(u′, v′,w′) at each wall-normal position, which we will approximate using
a trivariate normal p.d.f.

g(u′, v′,w′)= 1

2π3/2 |Σ |1/2 exp
[
−1

2
([u′, v′,w′]Σ−1 [u′, v′,w′]T)

]
, (4.10)
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where for boundary layers

Σ =

 u′2 u′v′ 0
u′v′ v′2 0
0 0 w′2

 . (4.11)

We can then estimate f (θ) using

f (θ)=
∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞

f (θ)g(u′, v′,w′) du′ dv′ dw′, (4.12)

where

θ = tan−1

(√
v′2 + w′2

(U + u′)

)
. (4.13)

The magnitude of the bias expected from the nonlinear averaging of the
velocity fluctuations can be estimated by examining profiles of the quantity q1 =
(U2 + u′2 + v′2 + w′2)

1/2
/U − 1, as shown in figure 7(a). To estimate this quantity, we

use the Schlatter & Örlü (2010) direct numerical simulation (DNS) data and DeGraaff
& Eaton (2000) laser Doppler velocimetry (LDV) data, along with the approximation
w′2 ≈ v′2 applied to the LDV data. The values shown in figure 7(a) demonstrate that
the greatest bias due to nonlinear averaging of the velocity fluctuations occurs for
y+ < 30, approaching 12 % of U at y+ = 1 for the Reynolds numbers shown. At
y+ = 30, the expected bias exhibits only weak Reynolds number dependence and is
approximately 2 % of U. For y+ > 30, the bias decreases monotonically to zero with
increasing wall-normal distance.

These results can be compared to profiles of q2 = (U2 + u′2)
1/2
/U − 1 from the

same data sets, shown in figure 7(b), which illustrates the expected bias introduced
solely due to effect of nonlinear averaging of the velocity fluctuations. As could be
expected, the major part of the error is introduced by this effect, although, as seen
by examining the difference q1 − q2 shown in figure 7(c), neglecting the transverse
stresses could result in under-correction by as much as 0.5 % for y+ > 30. Although
this is not a large contribution to the overall expected nonlinear averaging bias, we
see that neglecting the transverse stresses can result in a 2.5 % under-correction for
y+ < 30.

It would appear, therefore, that an accurate turbulence correction needs to
include the transverse as well as the streamwise Reynolds stresses. However, when
the magnitude of the bias expected from the instantaneous tube misalignment,
(f (θ)+ 1)

1/2−1, shown in figure 7(d) is compared to figure 7(c), we see that the
misalignment contribution counters the effect of neglecting the transverse Reynolds
stresses (note that the vertical axis of figure 7d has been inverted for better
comparison to figure 7a–c). Thus, the increase in measured velocity caused by
fluctuations in the magnitude of the velocity are counter-balanced by a corresponding
decrease in measured velocity due to fluctuations in the orientation of the velocity
vector at the tube face. This is not wholly unexpected, given that the transverse
velocity fluctuations are directly correlated to the direction of the streamline with
respect to the tube axis. Thus

U2
m = (f (θ)+ 1)(U2 + u′2 + v′2 + w′2)≈ (U2 + u′2), (4.14)
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FIGURE 7. Expected bias introduced in Pitot measurements due to: (a) nonlinear averaging
of instantaneous misalignment between the streamline and Pitot; (b) nonlinear averaging
neglecting transverse stresses v′2 and w′2; (c) only the transverse stresses v′2 and w′2; and
(d) instantaneous fluctuations in the velocity vector. Quantities estimated using the DNS of
Schlatter & Örlü (2010): —-, Reθ = 670; − − −, Reθ = 1000; − · −, Reθ = 2000; − − −,
Reθ = 3030; − · ·− , Reθ = 4060. Also shown is the same quantity calculated from LDV
measurements of DeGraaff & Eaton (2000): 4, Reθ = 1490; �, Reθ = 2900; ◦, Reθ = 5200;•, Reθ = 13 000; �, Reθ = 31 000.

and the effect of turbulence on the Pitot tube velocity can be corrected simply via

U ≈
√

U2
m − u′2 (4.15)

with an expected magnitude of the correction on U being less than 1.5 % for y+ > 30
and Reθ < 31 000. It should be noted that, although small, the wall-normal dependence
of the bias introduced by turbulence effects could affect the estimate of the von
Kármán constant. This will be examined in greater detail in a companion paper.

4.4. Revised wall-proximity correction for use in turbulence correction
As discussed in § 2, flow blockage introduced by the tube approaching the wall results
in a deflection of the streamlines away from the wall. Near-wall corrections, such
as those proposed by McKeon et al. (2003), are typically designed to correct the
data near the wall onto a formulation for the velocity profile (for example, U+ = y+

in the viscous region, or the log-law in the overlap region). Such schemes therefore
correct for shear, wall-proximity and turbulence effects. Thus, such corrections are
inappropriate when a separate turbulence correction is employed.
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It is necessary, therefore, to determine a new correction which will correct only
for wall-proximity effects. It was found that a simple modification to the MacMillan
wall-proximity correction, given by

1U

U
= (20e−0.1d+ + 1)0.015e−2.5(y/dp−0.5) (4.16)

within the range y < 2dp, effectively corrects the data for 7 < d+ < 160. This wall-
proximity correction is to be applied after the shear correction is applied. Note
that for d+ > 50 the correction is effectively equivalent to that originally proposed
by MacMillan, with only a slight change to the exponent to account for the y/dp

dependence observed in the current data set. It should also be noted that (4.16)
re-introduces dependence on d+ into the near-wall correction, and thus requires some
estimate of the wall shear stress.

In the presence of turbulence effects, a complete Pitot tube correction process is
therefore as follows: (i) apply the viscous correction for static taps if necessary (see
McKeon & Smits 2002, for example); (ii) apply the viscous correction (equation (2.1))
when Red < 100; (iii) apply the shear correction proposed by McKeon et al. (2003)
((2.2) and (2.3)) for all wall-normal positions; (iv) apply the near-wall correction
proposed in (4.16) for y< 2dp; and (v) apply the turbulence correction of (4.15). Note
that, since (4.15) requires a priori knowledge of the profile of streamwise Reynolds
stress, application of a turbulence correction could be impractical in generalized wall-
bounded flows. Even when a turbulence intensity formulation is available, often the
scaling and measurement accuracy of these values remains an open question; see
Mochizuki & Nieuwstadt (1996), Metzger et al. (2001), Morrison et al. (2004) and
Hutchins et al. (2009), for example.

5. Comparison to hot-wire data
The turbulence correction given by (4.15) was proposed under the assumption that

no filtering of the velocity fluctuations occurs before averaging. Such filtering might
occur due to spatial averaging of velocity fluctuations across the face of the tube,
or through the response of the transducer and tubing system. In addition, modern
measurement systems (such as fast-response multi-hole probes) allow the measurement
of pressure time series, making it possible to average after conversion to velocity,
introducing effects of temporal filtering caused by the dynamic response of the
measurement system. Hence, the validity and magnitude of the turbulence correction
as proposed needs to be assessed.

As part of the ICET measurement campaign, a series of hot-wire measurements
were performed by research groups from Melbourne and KTH at identical conditions
to the Pitot measurements for Reθ = 11 000, 16 000 and 21 000. These hot-wire results
offer a unique opportunity to compare results from these two measurement techniques
as well as assess the effectiveness of the turbulence correction.

Figure 8 makes this comparison for the 0.3 mm diameter Pitot results. In general,
the hot-wire and Pitot results exhibit exceptional agreement, being within 0.2uτ for
y+ > 300, or ±1 % of U+ and within the expected uncertainty for the Pitot tube
measurements. For 20 < y+ < 300 the Pitot tubes clearly measure higher values of
U relative to that of the hot-wire probe, with differences of 0.5uτ (up to 4 % in U).
This trend is consistent with the bias expected from turbulence effects, in that the two
measurement techniques agree in the wake region where turbulence intensity is low
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FIGURE 8. Comparison of 0.3 mm Pitot results corrected using the viscous, shear and
near-wall corrections of (2.1), (2.3) and (4.1) to hot-wire measurements at Reθ = 11 000,
Reθ = 16 000 and Reθ = 21 000 from both MTL and HRNBLWT facilities: •, Pitot; �, KTH
group hot-wire results; 4, Melbourne group hot-wire results.

and in the near-wall region where the wall-proximity correction has corrected the Pitot
tube for turbulence effects.

As shown in figure 9, the turbulence correction brings the Pitot tube measurements
into closer agreement with the hot-wire measurements, particularly within the range
20 < y+ < 300, although it was found to slightly over-correct relative to the hot-
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FIGURE 9. Comparison of 0.3 mm Pitot results corrected using the viscous, shear, near-wall
and turbulence corrections of (2.1), (2.3), (4.16) and (4.15) to hot-wire measurements at
Reθ = 11 000, Reθ = 16 000 and Reθ = 21 000 from both MTL and HRNBLWT facilities: •,
Pitot; �, KTH group hot-wire results; 4, Melbourne group hot-wire results.

wire for 10 < y+ < 20, perhaps reflecting errors introduced through a combination
of neglecting the transverse Reynolds stresses and uncertainty in the turbulence
intensity formulation. However, the results, in general, support the hypothesis that
a turbulence correction is necessary for Pitot tubes near the wall. Note that for the
Pitot profiles without the turbulence correction, there is a prominent ‘hump’ in this
region (figure 8) which is largely removed by application of the turbulence correction
(figure 9).
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The trend demonstrated between figures 8 and 9 supports the need for a turbulence
correction for Pitot tube measurements of the turbulent boundary layer, but the
magnitude and applicable range of wall-normal distances requiring correction cannot
be quantitatively determined from the present results. First, for y+ > 300, the Pitot
results, both with and without turbulence correction applied, agree with the hot-wire
results within ±1 %, and therefore any differences lie within experimental uncertainty;
also implying that within this y+ range the correction itself lies within the bounds
of experimental uncertainty. Second, the hot-wire results themselves are subject to
experimental uncertainty, and therefore it would be remiss to assume that they
precisely represent the true mean velocity profile.

6. Conclusions
Zero-pressure-gradient flat plate boundary layer velocity profiles were measured

in two different wind tunnels at relatively high Reynolds numbers. It was shown
that accurate profiles can be acquired with Pitot tubes, and that the measurements
are insensitive to tube diameter when either the constant ε or McKeon et al. shear
correction is used. The constant ε correction has the advantage of being easy to
implement, but the McKeon et al. approach, with its shear-dependent displacement
correction, will prevent over-correction in regions with low shear. A modified near-
wall adjustment to the McKeon et al. correction has been proposed and shown to
provide noticeable improvement over the original form, although the final results are
very similar to those obtained using the MacMillan near-wall correction and have not
been validated above d+ = 150. However, the corrections presented here are expected
to be generally applicable to both shear flows and wall-bounded flows.

The bias error introduced by nonlinear averaging of the turbulent velocity
fluctuations was also investigated. It was found that, although fluctuations in all
three components of velocity should be considered, the Pitot tube’s angular sensitivity
provides some compensation for the transverse fluctuations, so that a correction based
on only the velocity fluctuations in the streamwise direction was found to be sufficient.
Correcting for the turbulent fluctuations in addition to corrections for velocity shear
effects required the implementation of a new near-wall correction.

The Pitot results corrected for viscous, shear and near-wall effects with and without
the turbulence correction were compared to hot-wire measurements to evaluate the
effectiveness of the turbulence correction. The magnitude of the expected correction
was found to be relatively small, within 2 % for y+ > 30, and with or without the
turbulence correction the Pitot tube and hot-wire results agreed to within 1 % for
the majority of the boundary layer (in our experiments, for y+ > 300). Improved
agreement was only clearly demonstrated for y+ < 200. Within this region the
streamwise turbulence-intensity correction can be of comparable magnitude to that
of the shear correction, and is found to bring the hot-wire and Pitot results in closer
agreement when applied to the data along with the other corrections discussed and
refined here. The overall trend suggested that the correction may also be effective
further from the wall as well.

Given that, for boundary layers, the inner-scaled turbulence intensity is expected to
increase with Reynolds number, while the inner-scaled mean does not, the potential
bias introduced into Pitot profiles by the turbulence may increase with Reynolds
number. This is particularly relevant given that the magnitude of this bias is expected
to vary with wall position, thereby potentially altering the slope of the logarithmic
region. Considering the limited range of the Reynolds numbers considered here,
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further studies at higher Reynolds numbers would be needed to confirm the need
for turbulence correction at very high Reynolds numbers. It is also noted that the
assessment presented here is limited to the zero-pressure-gradient boundary layer,
and although potentially applicable to other simple turbulent wall-bounded flows, the
observations cannot be extended to more complex flows, such as those found in strong
adverse pressure gradients or three-dimensional boundary layers. In such flows, the
effects of other Reynolds stresses and changes to the integral scales of turbulence
could introduce additional effects not considered here.

We make no recommendation as to whether to use hot-wires or Pitot tubes
for measurement of mean flow, as that determination will depend on the details
of the experiment and the preferences of the experimentalist. The present results
confirm that, when properly corrected, Pitot tubes can measure mean velocity with
an accuracy comparable to that of hot-wire probes and there are advantages to
either approach. Although the hot-wire probe requires no correction for turbulence
effects, obtaining accurate mean flow measurements is still quite challenging. For
example, disagreement between different hot-wire probe profiles measured at the same
flow conditions contributed significantly to our inability to conclusively evaluate the
turbulence correction for the Pitot tubes. In this regard, the simplicity of the Pitot tube
and its application can make it preferable to hot-wires.

It is therefore suggested that Pitot tube measurements performed in turbulent
boundary layers be corrected using a viscous correction when Red < 100 using (2.1),
followed by a McKeon et al. shear correction using (2.3), followed by application
of the near-wall blockage correction of (4.16) for y/dp < 2, followed by the
turbulence correction of (4.15) using a suitable estimate for the streamwise turbulence
intensity. Should an estimate of the turbulence intensity be unavailable, mean velocity
measurements within 5 % of the true velocity for the inner layer and 1 % of the
true velocity for the outer layer can be obtained using a static tap and a viscous
correction, the McKeon et al. shear correction using (2.3), and the modified McKeon
et al. near-wall correction for y/dp < 3 using (4.1). The constant ε shear and near-wall
correction of MacMillan (1957) can also be used, as they were found to provide
virtually identical results and are easier to apply, but they also unnecessarily bias the
tube position in regions of low shear.

The relative magnitude of each of the correction procedures discussed here is
summarized in figure 10, which compares a single profile corrected only for viscous
effects to the same results corrected further using: (i) the MacMillan shear and near-
wall blockage correction; or (ii) the McKeon et al. shear correction with the near-wall
blockage correction of (4.1); or (ii) the McKeon et al. shear correction, the near-wall
blockage correction of (4.16) and additional turbulence correction of (4.15).

This last correction procedure was applied to all Pitot tube data acquired in the
MTL and HRNBLWT experiments. For simplicity and consistency, we employed the
streamwise turbulence intensity formulation of Marusic & Kunkel (2003) in (4.15).
It is believed that over the Reynolds number range of the current investigation, this
formulation is sufficiently accurate to apply the turbulence correction to the current
data set. The resulting velocity profiles obtained from all Pitot tubes, Reynolds
numbers and facilities are shown in figure 11.

In figure 11 a single case is observed to deviate from the trend displayed by
the remaining data sets. This particular case is the 0.89 mm tube at Reθ = 44 200
in the HRNBLWT. The most likely source of this discrepancy is uncertainty in the
initial probe position. The error is approximately 4 viscous units, which exceeds the
estimated uncertainty in initial position of approximately 1 viscous unit for this case
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FIGURE 10. Velocity profile measured by 0.3 mm diameter tube at Reθ = 21 400: �, viscous
correction only; 4, profile corrected using viscous and MacMillan shear ((2.2) with ε = 0.15)
and near-wall corrections (2.5); ©, profile corrected using viscous and McKeon et al. shear
correction (2.3) with near-wall correction of (4.1); •, profile corrected using viscous and
shear (2.3) corrections with additional turbulence and near-wall corrections of (4.7) and
(4.16).
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FIGURE 11. All 28 measured velocity profiles after viscous, shear, near-wall and turbulence
corrections applied using (2.1), (2.3), (4.16) and (4.15). Tube diameters: �, 0.2 mm; ©,
0.3 mm; O, 0.51 mm; 4, 0.89 mm; �; 1.8 mm.

and represents an outlier in the initial position estimate. Given that this is the only
case which displays such deviation, it represents 3.5 % of the data set and remains
consistent with our 95 % confidence interval of 1 viscous unit.
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Appendix. Uncertainty analysis
In this appendix the uncertainty analysis of various quantities in these experiments is

given (see table 2 for the results of the analysis).
Uncertainties may be divided into bias errors and precision errors. The Pitot tube

measurements are vulnerable to both types, where the wall-proximity, shear and
turbulence effects can be seen as bias errors and it is the purpose of the present
paper to find correction methods for these errors. Hence such effects are not taken into
account in the uncertainty analysis presented here. When applicable the uncertainties
are given as the value specified by the manufacturer of the given instrument, and
in cases when a quantity is calculated from several measurements the method of
propagation of errors is used. The uncertainty estimates given should be seen as 20:1
odds uncertainty (i.e. 95 % confidence interval).

In the following, uncertainties of the various quantities given in table 2 are
discussed.

(i) Dynamic pressure. This is the pressure difference measured between the
Pitot tube and the wall pressure tap. Three possible sources contribute
to the uncertainty: (a) calibration uncertainty of the pressure transducer;
(b) insufficient averaging time of the transducer signal; (c) insufficient settling
time after movement of the probe. The stated uncertainty of 0.4 % is from the
manufacturer’s specified accuracy. Both the sampling time (20 s up to 2 min,
depending on flow velocity and proximity to the wall) and the settling time
(20 s) after the probe has been moved are long enough, and the contribution to
the uncertainty from these is small and does not add to the uncertainty given
above.

(ii) Temperature. This is the temperature of the air, and it is needed in order
to determine its density and the dynamic viscosity. One should note that
a probe immersed in an air flow does not measure the static temperature
but probably something closer to the stagnation temperature (or rather the
recovery temperature). However, to determine the density it is the static
temperature that should be used in the ideal gas law. At the highest velocities
here (i.e. 40 m s−1) the stagnation and static temperature differ with almost
0.3 %, although this is not taken into account in the determination of the
temperature. In addition, the uncertainty of the measured temperature depends
on the calibration of the temperature-measuring device. The flow temperature
was measured by means of the respective tunnels’ transducers (PT100 at
KTH, thermocouple at HRNBLWT). The readings from these were found to
be within ±0.1 ◦C compared to a reference thermometer.

Variations of the wind tunnel temperature during a measurement also adds
to the uncertainty estimate. The MTL wind tunnel has good temperature
control through a heat exchanger and varies with less than ±0.1 ◦C during
a measurement series. The HRNBLWT, at the time of the measurements, did
not have a heat exchanger, and the temperature variation was hence higher. At
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the low velocity, U∞ ≈ 10 m s−1, the variation is within ±0.1 ◦C during one
profile measurement, at U∞ ≈ 25 m s−1 the variation is within ±0.25 ◦C, but at
40 m s−1 the temperature increases with ∼2.5◦ C during the measurement of
one profile.

From what is discussed above it is clear that the largest temperature
uncertainty appears at high velocity and may be of the order of ±0.5 %.
However, this is a clear overestimate for the lower velocities, where a
conservative estimate is as good as ±0.2 %.

(iii) The atmospheric pressure was obtained by means of an absolute pressure
transducer connected to the respective tunnels’ transducers. For both tunnels
the transducer accuracy is 0.1 % of full scale reading (which is slightly
above atmospheric pressure). An additional uncertainty could be the difference
between the pressure measured outside the test section and the pressure inside
the test section. This pressure difference is assumed to be negligible, since
in the MTL tunnel there are vents at the end of the test section. Also in
the HRNBLWT there may be some difference between the pressure inside the
tunnel and the atmosphere, but there are vents in the upper wall to ensure a
zero pressure gradient.

(iv) The density is calculated by the ideal gas law, where the value of specific
gas constant used is R = 287 J kg−1 K−1. According to the propagation of
uncertainties we get

ερ = (ε2
p + ε2

T)
1/2
, (A 1)

giving a density uncertainty within ±0.3 %.

(v) The dynamic viscosity was calculated with the Sutherland formula

µ= 1.458× 10−6 T3/2

T + 110.4
kg m−1 s−1. (A 2)

The main uncertainty comes from the measured temperature (±0.2 %) and the
resulting uncertainty in µ is of similar order; εµ =±0.2 %.

(vi) The skin friction used here is based on another set of experiments, taken in
conjunction with the present measurements, but will be thoroughly discussed in
a separate paper. Here there are two different issues: (a) the uncertainty in the
determination of τw for each measured oil drop; (b) the possible bias error of
the different wind-tunnel setups. The data have been fitted to the logarithmic
skin friction relation

cf

2
= (κ−1 lnReδ∗ + C)

−2
, (A 3)

and the constants have been determined to be κ = 0.38 and C = 3.0. The data
from the different wind tunnels where the oil film measurements have been
performed (MTL, HRNBLWT and NDF) shows some consistent deviations,
which should be seen as a bias error rather than a precision error. For the
individual oil drops the 95 % confidence level uncertainty for a given condition
in a given tunnel becomes of the order of 0.7 % of τw; however, for the fit of
all oil-film data to the skin friction law the 95 % confidence level uncertainty
becomes 3.8 % for Cf , meaning that the precision error is almost negligible.
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(vii) The viscous length scale is calculated as

`∗ = µ

ρU∞

2√
Cf

, (A 4)

and the uncertainty as

ε`∗ =
√
ε2
µ + ε2

ρ + ε2
U∞ + 0.25ε2

cf
. (A 5)

(viii) The velocity is calculated as U = √21p/ρ and the uncertainty is hence
calculated as

εU =
√

0.25ε2
1p + 0.25ε2

ρ, (A 6)

which does not include bias errors from wall-proximity, shear and turbulence
effects. However, there is also an effect of compressibility that for small Mach
numbers can be expressed as

Ucompr

Uincompr
= 1− 1

8
M2 + O(M4). (A 7)

For 40 m s−1 this (bias) error in U amounts to 0.2 % and is included in the
uncertainty estimate.

(ix) Inner-scaled velocity U+ = U/uτ . The expression for U+ can be rewritten as

U+ = U

U∞

√
2
Cf
=
√
ρ∞
ρ

1p

1p∞

2
Cf
. (A 8)

The uncertainty is calculated as

εU+ =
√

0.25ε2
ρ∞/ρ + 0.25ε2

1p + 0.25ε2
1p∞ + 0.25ε2

cf
. (A 9)

We can estimate ερ∞/ρ to a maximum of 0.7 %, which is obtained from the
ratio of the stagnation density and the static density at 40 m s−1, but the main
uncertainty comes from εcf .

(x) y0: this is the estimated uncertainty in the determination of the wall with
respect to the centre of the Pitot tube. It is estimated from the point where
the tube leaves the wall, including the precision of the tube diameter measure
given by the manufacturer. The estimate of these two are 15 and 25 µm,
respectively. This gives an uncertainty for the position of the tube centreline
of ±20 µm. For the different measurements in this paper, depending mainly on
the free-stream velocity, the viscous length scale is within the range 10–45 µm.

(xi,xii) 1y: this is taken as the resolution in the y-coordinate, which is 1 and 0.5 µm,
respectively, for the two traverses.

(xiii) Reθ is calculated as

Reθ = θ
√

2ρ∞1p∞
µ

, (A 10)

where we can write the expression for θ as

θ =
∫ δ

0
u(1− u) dy (A 11)
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and u(y) = U(y)/U∞ is the measured velocity normalized with measured free-
stream velocity at distance y from the wall. The uncertainty estimate becomes

εReθ =
√
ε2
θ + 0.25ε2

ρ∞ + 0.25ε2
1p∞ + ε2

µ, (A 12)

where the largest uncertainty comes from θ . The uncertainty of θ was
estimated through a Monte Carlo simulation assuming random errors in the
velocity measurements with the ±0.3 % uncertainty in table 2. With the
assumption of an exact free-stream value this gives us εθMC =±0.8 %.

(xiv) The uncertainty for Reδ∗ can be determined following the same procedure as
for Reθ described above. Reδ∗ is used to determine the skin friction; however,
owing to the logarithmic dependence, the uncertainty in Cf due to Reδ∗ is
negligible.

(xv) Mean velocity measured by hot-wire: the hot-wires are calibrated in situ in
the free stream of the wind tunnel. The main uncertainty comes from the fit
to the calibration curve (third-order polynomial) which is within ±1.0 % (95 %
confidence interval).
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